Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin

نویسندگان

  • Pan F. Chan
  • Velupillai Srikannathasan
  • Jianzhong Huang
  • Haifeng Cui
  • Andrew P. Fosberry
  • Minghua Gu
  • Michael M. Hann
  • Martin Hibbs
  • Paul Homes
  • Karen Ingraham
  • Jason Pizzollo
  • Carol Shen
  • Anthony J. Shillings
  • Claus E. Spitzfaden
  • Robert Tanner
  • Andrew J. Theobald
  • Robert A. Stavenger
  • Benjamin D. Bax
  • Michael N. Gwynn
چکیده

New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide's antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a 'pair of swing-doors' hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1's bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mycobacterium tuberculosis DNA gyrase as a target for drug discovery.

Bacterial DNA gyrase is an important target of antibacterial agents, including fluoroquinolones. In most bacterial species, fluoroquinolones inhibit DNA gyrase and topoisomerase IV and cause bacterial cell-death. Other naturally occurring bacterial DNA gyrase inhibitors, such as novobiocin, are also known to be effective as antibacterial agents. DNA gyrase is an ATP-dependent enzyme that acts b...

متن کامل

Target preference of 15 quinolones against Staphylococcus aureus, based on antibacterial activities and target inhibition.

The antibacterial activities and target inhibition of 15 quinolones against grlA and gyrA mutant strains were studied. The strains were obtained from wild-type Staphylococcus aureus MS5935 by selection with norfloxacin and nadifloxacin, respectively. The antibacterial activities of most quinolones against both mutant strains were lower than those against the wild-type strain. The ratios of MICs...

متن کامل

Isolation and quantitation of topoisomerase complexes accumulated on Escherichia coli chromosomal DNA.

DNA topoisomerases are important targets in anticancer and antibacterial therapy because drugs can initiate cell death by stabilizing the transient covalent topoisomerase-DNA complex. In this study, we employed a method that uses CsCl density gradient centrifugation to separate unbound from DNA-bound GyrA/ParC in Escherichia coli cell lysates after quinolone treatment, allowing antibody detecti...

متن کامل

Inhibition of DNA Gyrase by Levofloxacin and Related Fluorine-Containing Heterocyclic Compounds

Fluoroquinolones are an important class of modern and efficient antibacterial drugs with a broad spectrum of activity. Levofloxacin (the optically active form of ofloxacin) is one of the most promising fluoroquinolone drugs, and its antibacterial activity is substantially higher than the activity of other drugs of the fluoroquinolone family. Earlier, in the Postovsky Institute of Organic Synthe...

متن کامل

DNA gyrase inhibition assays are necessary to demonstrate fluoroquinolone resistance secondary to gyrB mutations in Mycobacterium tuberculosis.

The main mechanism of fluoroquinolone (FQ) resistance in Mycobacterium tuberculosis is mutation in DNA gyrase (GyrA(2)GyrB(2)), especially in gyrA. However, the discovery of unknown mutations in gyrB whose implication in FQ resistance is unclear has become more frequent. We investigated the impact on FQ susceptibility of eight gyrB mutations in M. tuberculosis clinical strains, three of which w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015